Scope Measurement on Large IT Projects in Texas: A Position Paper
By Herb Krasner, Don Shafer and Linda Shafer, February 2, 2018

Executive Summary

The new Section 2054.159 of the Texas Government Code (HB 3275, 85R) adds specific
monitoring requirements for Major Information Resources Projects (MIRPs1?) in Texas state
agencies. It requires regular monitoring and reporting on project performance indicators of:
schedule, cost, scope, and quality. IT scope measurement is the focus of this report.

The application of IT scope metrics serves the following basic purposes:
* To help achieve project goals and objectives
* To help define and deliver the right product/system
* To assist in estimation, planning and executing the project effectively
* To help release a quality product/system at the right time
* To help analyze and evaluate created work products (intermediate and final)
* Facilitate organizational improvement

Along with measuring the other MIRP performance indicators (cost, schedule, quality) 1, a
successful IT scope measurement program in an organization will mean that:
* The measurement program results are actively used in IT decision making
* These measurements are communicated and accepted outside of the IT organization as well as
within the project
* The measurement program is self sustaining
* Ultimately it will mean that a larger percentage of MIRPs will be considered fully successful

In this paper we recommend several specific IT scope metrics that should be used on all MIRPs.
* Balanced Scorecard (BAL),
* System/project size and its growth or change,
* System requirements metrics for: anomalies, quality, volatility, change impact and
satisfaction.
How these are combined to answer the larger question of are we on track is discussed, as well as,
how these metrics are used to address the typical scope challenges found on MIRPs. We
conclude with a discussion of the next steps that the state needs to take to properly implement
these recommended metrics.

[t will be important for agency CIO’s and IT Leaders (e.g. IRMs, IT PMOs, IT project leaders,
vendor contract managers) to begin the process of defining more precisely what their IT scope
objectives and performance indicator(s) would mean; and laying out the framework for
collecting and reporting on all newly required MIRP performance measurements. It will also be
important for state IT leadership to update the various policies, procedures, rules, handbooks,
reporting instructions, and templates that govern the effective monitoring of MIRPs.

We are hopeful that the positions put forward in this paper provide useful guidance that can be
adapted to the state, the agencies and local project needs as necessary. Please contact the
authors listed in appendix 1 for more information or to answer questions about this and related
reports.

Copyright@2018 - Herb Krasner - all rights reserved Page 1

Table of Contents

0010 301 U 0) o T 3
Establishing a reasonable Set 0f SCOPE MELTICSvrieiereinrerneeineeiect et eseese e ess s ss s sssssssesasesans 4
The Process 0f DefiNing SCOPE ...ttt sesssses s eesse bbb s s s bbbt 4

Measurement Implications for Scope Management..........uis s 6
Balanced SCOTECATTZ (BAL) .. ereereereeueetseeseessesssessseessesssessse bbb ssessesssesssssssesss s st e bbb sb e s sassssebasesans 6
30 Q0] <0t A U7/ PP 7
BT 1 10) V2 PP 8
L 2ET0 LD Q=) 0 7<) R 00 1=3 0 o (TP 9

L0100 1 Lol L1) 1) 15
What about Overall Status of the project being tracked?........ s sseseees 15
A o 1) 1TSS 17

S5 (=) Q1= 1 o 18
Appendix 1: Authors’ Contact INfOrmation ... ————————— 19

Copyright@2018 - Herb Krasner - all rights reserved Page 2

Context. The new Section 2054.159 of the Texas Government Code (HB 3275, 85R) adds specific
measurement requirements for Major Information Resources Projects (MIRPs19) in Texas state
agencies. It requires regular monitoring and reporting on project performance indicators of:
schedule, cost, scope, and quality. Since IT project scope is a new area of required measurement
for Texas MIRPs, particular attention will be needed to define the framework for effective
measurement and derivation of reported scope performance indicators. Scope needs to be
defined, evolved and controlled by effective management practices over the entire IT project
lifecycle. In our previous position papers, we discussed the implications and challenges of
implementing this new law for Texas state and agency IT leadership!!; and also the more specific
implications of measuring IT quality?.

Introduction

Empirical research has shown that poor: scope management, requirements definition, and
change management are the major causes of IT project failure!3. Every year these failures cost
huge sums of money. One of the major failure sub factors is the result of uncertain expansion or
fluctuation in project scope, aka, scope change. Furthermore, scope change directly affects the
project’s budget, schedule, and finally the product’s quality.

IT Project Scope Management includes those processes required to ensure that the project
includes all the work required, and only the work required, to complete the project successfully.
More precisely the term scope includes:
* Product scope. The features, functions, technology and quality attributes that
characterize a product, service, and/or result; and
* Project scope. The work performed to deliver a product, service, and/or result with the
defined product scope.
In many cases the term “project scope” is used to mean both of the above, as in the remainder of
this paper unless indicated otherwise.

Product scope can be used to estimate project scope (i.e., schedule, budget, resources).
Alternatively, constraints on project scope may be used to determine product scope. Constraints
on both project and product scope may require tradeoffs among features, quality attributes,
schedule, budget, resources, and technology.

Together project and product scope determine the effort needed to develop or modify an IT
system. Effort is the primary cost driver for these projects.

There is a continuum of possible life cycles for IT system projects that lie within a spectrum from
highly predictive life cycles to highly adaptive life cycles. Where necessary we describe the
common elements of, and the distinctions between, scope management for predictive and
adaptive life cycles, and where that may effect the measurements to be used for scope
management.

A more quantitative approach to developing IT systems is highly desirable. To achieve this, the IT

profession needs a set of useful measures that are understood and accepted by developers, users,
and management. A practical, flexible scope measurement suite is thus needed, not only to

Copyright@2018 - Herb Krasner - all rights reserved Page 3

develop more reliable estimates, but also to better communicate with technical and nontechnical
management on issues of scope, change, complexity, risk, and the like.

Establishing a reasonable set of scope metrics

Status, as defined by dictionary.com is "state or condition of affairs" at a certain point in time.
What we need to track then is the condition of affairs of the scope dimension of our project at
various points in time. The implication is we need to define the desired condition of affairs (our
objectives) and measure against them over time to determine progress or lack thereof.

The Goal Question Metric Approach (GQM - 1984)8 set out to identify the relevant metrics by
defining specific goals for their measurement. These goals suggested the kinds of questions or
models you may want to use, and these define the metrics you need. The models you select
provide the framework for interpreting the metrics. For example:

| Tactical Measure || Question Answered || Sample Indicator

Scope Is our project scope Number and Size of Change Requests
stable/volatile/correct?

Time How are we doing against ||Schedule Performance Index (SPI) = Earned Value + Planned Value
the schedule?

Cost How are we doing against ||Cost Performance Index (CPI) = Earned Value + Actual Cost
the budget?

Resources Are we within anticipated ||[Number of hours overspent per phase or iteration
limits of staff-hours spent?

Quality Are the quality problems Number of defects fixed per user acceptance test
being addressed?

Anomalies Are we keeping up with our ||[Number of action items behind schedule for resolution,

(issues, problems &|laction item list for anomaly ||defect counts

defects) resolution?

Defining goals involves specifying the objects you are measuring, e.g. a product, process, a model,
the focus of interest, e.g., cost, defect removal, change, reliability, user friendliness; the purpose,
e.g., to characterize, analyze, evaluate, predict, the perspective of the person wanting the
information, e.g., the manager, developer, organization; and the context, e.g., the organization's
characteristics and context variables. All these help define what measures you need and how you
are going to interpret them.

The Process of Defining Scope

It will be impossible to measure an undefined scope of work. Most large IT projects will follow a
well defined, disciplined and systematic approach to establishing scope, using known best
practices and tools. In general, scope should be crisp and well defined, and derived from the
business goals. Identifying features and functions that are specifically excluded from work
products and deliverables can be extremely useful, as it helps sets firm, clear boundaries, helping
to curb scope creep and gold plating.

Copyright@2018 - Herb Krasner - all rights reserved Page 4

The documentation of the scope of the project will define the boundaries of the project, establish
the responsibilities of the team, and set up procedures for how work that is completed will be
verified and approved. This documentation is often referred to as the scope statement or
statement of work, and would be augmented by a: business case analysis, project charter, project
plan, and a project dictionary.

The scope definition also helps to manage stakeholder’s expectations from the very beginning of
the project. Therefore, a scope definition is considered “proper” only when it is acceptable to the
stakeholders. In fact, the quality of the scope definition is one of the initial components that
determine the fate of the project.

To fully define the scope of a project in the traditional mode, the following would be identified:
* Project objectives (within the broader goals of the organization)
* Requirements
+ Deliverables
+ System Development Lifecycle (SDLC) and its Sub-phases

» Tasks

* Resources
* Budget

» Schedule

* Quality objectives

Once these parameters are established, the limitations of the project can be clarified and the
aspects that are not included in the project identified. By doing this, the project scope will make
clear to all stakeholders what will and will not be expected in the final product and/or services.

For an ideal predictive life cycle IT system project, the initial project and product scope
statement is meant to be a static document, however this is rarely the case in practice. In an
adaptive life cycle IT system project, the scope statement is a list of high-level themes, epics
and/or functional objectives. This is planned to be an evolving document that is bounded by
overall project constraints. Systematic evolution of scope is an important factor in both adaptive
life cycles and predictive life cycles. The mechanisms for that evolution are quite different
however.

The typical problems that arise when defining and documenting Project Scope are:

» Ambiguity: Ambiguity in scope often leads to unnecessary work and confusion.

+ Incomplete definition: Incomplete scope definition leads to schedule slips which lead to
cost overruns.

« Transience: Transient scope leads to scope creep—the primary cause of late deliveries
and “never-ending” projects.

» Uncollaborative scope: A scope definition that is not collaboratively prepared causes
misinterpretations in requirements and design.

These can lead to execution problems once the project has begun, and therefore early and
rigorous continued scope review is necessary.

Copyright@2018 - Herb Krasner - all rights reserved Page 5

A process for controlling IT project scope in a traditional project is defined by the PMI PMBOK
standard, Chapter 5 and the Software Extension to the PMBOK, Chapter 5. We assume that the
reader is familiar with that approach® and terminology for the remainder of this paper.

Measurement Implications for Scope Management

[t is assumed by this paper that the given MIRP is already practicing earned value management
(EVM11) in the areas of cost and schedule control. EVM metrics (e.g. Estimate To Complete
(ETC)) will contribute to scope control by using established baselines to control underestimation
of the complexity of the problem and/or the emerging solution system, and by looking at
planned versus actual accomplishments. This helps by illuminating the project from the
perspective of cost and schedule overruns. The measurement of earned value was covered in
our initial position paper!. Earned value may be determined differently for adaptive (e.g. agile)
projects.

Three additional scope metrics categories are recommended here: balanced scorecard,
system/project size and requirements metrics.

(i) Balanced scorecard is intended to improve the development of a system by
determining the contextual parameters related to financial, customer, internal process
development, and learning/growth perspectives.

(ii) System size attempts to measure the inherent size of the emerging system from
requirements all the way through code and operation. The relative size of the project
attempts to categorize the project in order to apply previous historical data and
lessons learned.

(iii) Requirements metrics focus on tracking and documenting the changes to the product
requirements and then relating those changes to the actual needs of the project. In
addition, requirements metrics track and document the changes along with their
causes and the entity responsible for the changes.

With these basic facts, it can be said that, with the proper preparation of management plans at
the beginning of the project, along with an implementation of suitable IT measurements, are
supporting factors for scope management in any large IT system project.

Balanced scorecard’ (BAL)

BAL is a management tool that is used by an organization to monitor their performance against
strategic goals and project objectives. The term “scorecard” signifies quantified performance
measures and “balanced” signifies the system is balanced between short-term and long term
goals, objectives, financial and non-financial measures, lagging and leading indicators and
internal and external performance perspectives.

Metric 0: BAL.

Copyright@2018 - Herb Krasner - all rights reserved Page 6

BAL maps the organization’s project goals into performance metrics in four areas: financial,
customer relationships, internal processes, and learning/growth. These perspectives provide
relevant feedback as to how well the project plans are being executed so that adjustments can be
made as necessary. The four perspectives are:

(i) Financial. Financial performance measures indicate whether the project’s
implementation and execution are contributing to bottom- line improvements. The
main financial objectives for an IT project are typically: ROI, value achieved,
productivity improvement, cost of ownership and/or cost reduction. These are
documented in the business case prepared prior to project initiation, and are then
tracked during project execution to ensure that agreed upon value is in fact delivered.
The primary metric for this perspective is usually Return On Investment (ROI).

(i) Customer. Customer perspective mainly focuses on the measurement of customer
needs and fulfilling their expectations. Customer satisfaction metrics are created and
used. Customer satisfaction can be determined by conducting surveys among the
customers, or by means of other feedback mechanisms (e.g. user alpha and beta
testing). SLA achievement metrics are used for IT-as-a-service situations.

(iii) Internal process. The internal process perspective based metrics begin with the
team’s understanding about the effectiveness of the definition, development, delivery
and sustainment process (i.e. SDLC or Lifecycle). The conventional performance
measurement system focuses on monitoring and improving existing processes, as well
as, identifying entirely new processes at which a project must excel to meet customer
needs and project objectives. Metrics include: process maturity, process effectiveness,
average cycle time, etc.

(iv) Learning and growth. The learning and growth perspective includes employee skills
development and organizational cultural attitudes related to individual, team and
organizational self-improvement. In the current climate of rapid technological change,
it is necessary for knowledge workers to be in a continuous learning mode. Learning
and growth metrics guide managers in focusing training funds where they can help,
and lead to the need to invest in the three categories of learning and growth such as
employee capabilities; information systems capabilities; and motivation,
empowerment, and alighment. Metrics include: staff turnover rates, learning
outcomes, team effectiveness, etc.

IT project specific metrics can be determined in each of these four categories in accordance with
the specific situation. Good examples of using this technique in the software development
industry®’ reveals the potential for use in all MIRP situations.

Project Size

Metric 1: Total Effort and its growth rate

In project terms, "size" is usually an all encompassing designation, used to quantify the overall
"extent" of the project effort, usually accounting for duration, cost, complexity, staffing
requirements and related parameters. This allows IT projects to be characterized in comparative
terms. We prefer the rough order classification scheme of: tiny, small, medium, large, extra large,
and mega. The relative budget ranges for this scheme are ~: <$100K, <$1M, <$10M, <$100M,
<$B, and >$1B. The approximate total budget size can be computed by the total number of
person-hours required times the average hourly rate of all members contributing to the project.

Copyright@2018 - Herb Krasner - all rights reserved Page 7

Projects of different sizes may need to operate quite differently depending upon their objectives,
and therefore the formality of their scope control processes may be different.

However, the total number of work hours is a simple, meaningful metric for the size of a project’s
effort. Hours consumed relative to plans are easily tracked with a time recording tool. The
effort growth rate should follow a predictable pattern (e.g. a Raleigh-Norden curve). Another
possible measurement of project size is for example, the number of activities/tasks in the WBS or
task lists.

System Size

IT system size is the main input parameter to effort estimation models. However, there is no
standard, single measurement for IT system size; unlike other industries (e.g. that use weight -
as in the food industry and square feet for building footprint). Each sizing method has its
advantages and disadvantages and professional advice should be sought before choosing the
method that best suits your project. Benchmarking is facilitated by using industry data, such as
found in the ISBSG Repository!? or (preferably) the organization’s own historical project
database.

Metric 2: Functional size and its growth.

IT functional sizing is used to estimate the size of a system, application or component to support
cost estimating, progress tracking, and other project management activities.

The functional size attribute of an IT system depends upon how the requirements are defined.
Commonly used early metrics are the number of pages or lines of text or the countable number
of requirements (perhaps weighted), in the requirements definition document or product
backlog. There are several system size metrics to consider, depending upon the type of
development project and the lifecycle model chosen. These include counting, for example:
function points, non-functional points, enhancement points, feature points, story points, number
of testable requirement statements, epic/thematic specifications, use cases, user screens,
database size, reports produced, weighted system modules/components, source lines of code,
number of lexical tokens, number of test cases, documentation number of pages/words, etc. All
large IT projects wrestle with this concept of measuring the inherent size of their emerging
system throughout the lifecycle.

An appropriate blend of these measures should be defined and tracked for each specific project.
All of these different kinds of size metrics can convert to the more common metrics of work
product object counts and ultimately effort. The most important thing is to monitor the growth
pattern for these size measures, and look for anomalies relative to expectations in that pattern.

The older method of counting lines of code is often too late and less useful for today’s
component-based systems. International Function Point Users Group (IFPUG) function points is
currently the most commonly used IT sizing metric. It is better suited to applications that
contain user interfaces, reports, system functions and database tables.

Copyright@2018 - Herb Krasner - all rights reserved Page 8

Basically, a number of function points are assigned to a screen, depending on the number of data
elements on the screen/report and the number of database tables that are referenced. Function
points are also assigned to tables depending on their size. The total is the unadjusted function
point count (UFP). There is then an adjustment step to cater for the other attributes that need to
be considered when developing a system. There are 14 attributes to assess. For details on
IFPUG function point counting go to IFPUG. There is also an emerging standard for automating
the measurement of an IT system size using function points. For more information see http://it-
cisg.org/standards/software-sizing-standards/

On agile projects the most common size measurement is story points, and the number of story
points delivered in an increment (e.g. sprint) is assumed to be relatively stable in order to
achieve consistent velocity (flow). There is a known relationship between story points and
function points as a measure of IT system size, which can be empirically developed for each agile
team. However this conversion approach (backfiring) is currently an emerging practice. Itis
advised that agile teams use both story points and function points to measure size over the
development lifecycle.

Requirement metrics

In common usage, a requirement is something that is wanted, needed, asked for, or demanded.
Broadly a “requirement” is defined as a condition or capability that is necessary for a system to
meet its objectives. For IT projects, the term requirements is defined within project objectives
and usually means specific capabilities that a system must provide in order to solve a problem.

An IT system requirement is a statement of one of the following:

1. What a system must do (functional, shall)

2. A known limitation or constraint on resources or design (e.g. capacity or speed)

3. How well the system must do what it does (e.g. quality attributes)
The collection of all such statements is called the requirements definition set or suite or
specification. We would like each requirement and the entire suite to have known desirable
properties (e.g. clarity, completeness, consistency, etc.).

Requirements include functional requirements; performance requirements; and requirements
for hardware, software, and user interfaces. They may also specify development or quality
assurance standards for both product and project. They can be stated either quantitatively or
qualitatively, but the preference is to quantify whatever possible*.

Initially, in predictive life cycle projects, there is an attempt to develop a set of system
requirements that are complete, correct, consistent, and appropriately detailed. These
requirements provide the basis for determining the evolving scope of the project and for
developing the Work Breakdown Structure (WBS) and the work packages. Project scope is then
managed by controlling changes to the requirements and the work activities needed to
implement those requirements.

The impact of changes to product requirements on the project schedule, budget, resources, and
technology may require revision of the project scope and is reflected in changes to the plans,

Copyright@2018 - Herb Krasner - all rights reserved Page 9

WABS or task list. Change control boards and a version control system are typically utilized in
predictive projects to manage the changing scope of an IT system project.

Since all of the requirements identified in upfront elicitation will not usually be included in the
product, defining scope involves choosing the requirements that will be part of the product
scope. This issue is commonly dealt with by prioritizing the requirements using criteria that
include the wants and needs of the customer and user communities, and the value added by each
requirement. Risks, assumptions, and constraints are also taken into consideration when
defining scope.

IT system requirements for predictive life cycle projects are typically documented in an online
repository of baselined requirements. Requirements for future iterations of an adaptive life cycle
are maintained in product feature backlogs, candidate feature lists, story lists, or in a more
automated requirements management tool.

Requirements documentation, including traceability, is particularly important because of the
intangible nature of an IT system. A requirements traceability matrix provides visibility from
requirements to intermediate work products (e.g., design documentation, test plans, test
results), and then to the components of the deliverable product.

There exist techniques, methods and tools to help business analysts, product owners, managers
and subject matter experts create, clarify, and confirm business, stakeholder, solution, and
transition requirements for successful IT project outcomes.

The metrics that are useful in identifying the risks of a project by identifying errors and changes
in the requirements definition suite are known as requirement metrics. These metrics validate
the documented requirements against actual requirements. They evaluate whether the
requirements are of good quality or not. A single metric cannot ensure overall requirements
quality; therefore, multiple metrics should be used in this area.

Requirements Objective: Deliver a system with the agreed upon functionality and required non-
functional attributes. The following 5 requirements metrics support that objective.

Metric 3: Scope anomalies, problems and deficiencies

An anomaly is any condition that departs from the expected [Institute for Electrical and
Electronic Engineers (IEEE) Standard 1044]. The expectation that establishes the context for an
anomaly may come from any number of sources (e.g. requirements documentation, user
perceptions). An anomaly is not necessarily a problem or a defect; but could generate one or
more. Significant anomalies should be recorded and thus require management attention.

A scope problem is influenced by the SDLC chosen. What is a problem in a waterfall project is an
opportunity in an agile project. In any case, an identified problem requires action to rectify.
There are many kinds of IT scope problems. For example, due to:

* Lack of domain knowledge
Lack of scope definition/elicitation expertise
Too much/too big scope
Lack of prioritization

Copyright@2018 - Herb Krasner - all rights reserved Page 10

* Undocumented scope

* Vague scope

* Lack of measurability in scope

* Frequent changes in scope
IT scope problems are usually tracked in a Problem Reporting tool, and are managed to closure
in a disciplined fashion.

A scope deficiency (i.e. defect) is determined in relation to a defined requirements quality model
(either explicit or implicit). Such defects are tracked in a defect management tool. Sadly, too
many organizations and projects do not report and track requirements defects.

Metric 4: Requirements quality

The purpose of having requirements is to form a common understanding and agreement between
the stakeholders and the project team about delivering a system with specific functionality to
their customers. This should include relative priorities and valuations. Historically this area has
been the most problematic for larger IT projects?.

This area varies greatly with the level of desired specificity of defined system objectives.
Committed requirements/functions/features/use cases/user stories versus delivered results
meeting defined "doneness" criteria are usually tracked. The term SMART is an acronym for
Specific, Measurable, Achievable, Realistic and Time-bound. SMART is a much-used tool in
determining if requirements are well written. Completeness and consistency are also important.
Many measure volatility as a quality indicator.

In the conventional, waterfall model of development a standard like IEEE Standard 830 could be
applied. That model requires a Software Requirements Specification to be correct, unambiguous,
complete, consistent, ranked for importance, verifiable, modifiable, and traceable. Every one of
these qualities could be (and should be) verified in their own specific ways. For example,
ambiguity detection in English language requirement statements is challenging but doable. This
view of requirements quality rarely applies to the innovative; agile IT projects typically done in
IT shops today.

Content related requirements quality (as opposed to syntactical views) refers to goal models that
connect expected content to project success factors. Such models need subject matter expert
interpretation. These models can lead to a set of quality metrics to facilitate achievement.

Agile teams use a hierarchical model (aka roadmap) of themes, epics, and product backlogs of
user stories to manage their requirements. Product owners prioritize the user stories and help
create acceptance criteria. To enable delivering products with sufficient quality agile teams need
to have user stories that are ready at the start of each sprint. Teams can use a Definition of
Quality (DoQ) to check the user stories. A DoQ states the criteria that a user story should meet to
be accepted into the start of an iteration. For example, using a model such as INVEST to grade the
individual stories in six factor areas.

[- Independent

Copyright@2018 - Herb Krasner - all rights reserved Page 11

N - Negotiable

V - Valuable

E - Estimate-able

S - Small

T - Testable
Writing quality user stories is starting to emerge into a best practice, as we are now moving into
the 2nd generation of disciplined agile methods.

Emerging research has started to define the contents of quality users’ stories. This includes, for
example, a set of criteria for user story quality. This includes syntactic (textual) criteria of: well
formed, atomic, and minimal. This also includes the semantic (meaning) criteria of: conceptually
sound, problem-oriented, unambiguous, and conflict free. This also includes the pragmatic
(subjective interpretation) criteria of: full sentences, estimatable, unique, uniform, independent
and complete. Tools are starting to emerge for analyzing user stories for these quality criteria.

Metric 5: Requirements volatility

Gause and Weinburg® explain that false assumptions not corrected in the requirements
definition phase may cost 40 to 1000 times more to remedy after the system has already been
fielded. For this reason, the magnitude of changes in the project requirements are considered as
one of the leading indicators of potential problems.

The degree of measuring the requirement changes over a time period is called requirements
volatility. It also is used to help determine the reasons of requirement changes. These factors are
measured to know whether the changes are consistent with the current set of development
activities or not. It helps in tracing future requirements, design, and code volatility by indicating
the requirements changes.

The best metric for requirements volatility is to determine what requirements have changed
between baselines. A requirement may have changed multiple times between baselines, but
should be recorded as a single change. In addition, a new requirement that may have undergone
multiple editorial changes should be treated as a new requirement, until a new baseline is struck.
Measuring volatility this way will identify the volatility of existing requirements, the number of
new requirements; and you can easily determine the number of deleted requirements between
baselines. These measures depend on the project striking baselines during key milestones.
Requirements management tools (e.g. DOORS) along with Excel spreadsheets can provide the
visualization of requirements volatility over time.

The requirements volatility metric supports the measuring of the number of requirements
added, deleted and modified. It also determines the causes of adding, deleting and modifying the
requirements and classifying those requirements with the reason for change. A proper
implementation of the requirements volatility metric has the following advantages:

* Determines the number of initially allocated requirements. The requirements volatility metric
measures the number of initially allocated requirements. It includes all the technical and non-
technical requirements provided by the customer. This metric describes the level of requirements
volatility along with the number of final allocated requirements as well as the number of changes
allocated per requirement.

Copyright@2018 - Herb Krasner - all rights reserved Page 12

* Determines the final requirements. This metric measures the number of allocated final
requirements. It also includes all technical and non-technical requirements to build the final IT
system products.

* Tracks the number of changes per requirement. This metric tracks the number of changes made to
each requirement. Along with describing the level of volatility of the requirements, this metric
also describes the impact of changing the requirements in the IT system process.

* Tracks the number of changes in a specific time period. This metric contains the number of
changes of requirements for a specific time period, such as a week or a month. It describes the
degree of volatility of the requirements. Its value should decrease towards the end of the IT
system lifecycle (indicating convergence of requirements). It is measured during the project
lifecycle.

* Causes of change. This metric collects all the causes of requirement changes and categorizes
them. It helps in identifying the most common causes of change in the IT system process and can
be used to improve the IT system process.

* Identifies who requested the change. This metric helps in identifying the source of the change, the
reason for implementing a specific functionality, and anticipates the source of changes in the
future.

Due to these specific functionalities of the requirements volatility metric, it is suitable to
determine the causes of scope changes and prevent project scope creep.

In agile projects, by committing to only what needs to be done in the next incremental delivery,
the overall stability of requirements converges, thus resulting in a higher quality product
delivered to customers. Even in this case baselines can be established and volatility tracked as
the backlog is scrubbed during iteration planning and then iteration closure.

The main purposes of this aspect are to: track progress or lack thereof, enable corrective actions
when necessary, and to detect variance from our plans. Periodic status meetings/reports, and
milestone reviews are based in factual data.

Metric 6: Impact due to functionality change requests.

Metric: Variance in project plan due to functionality change requests. The measurement
mechanism for scope is project change requests, and the impact of that change to the project.
This should be measured at least monthly and in some situations weekly.

Change in functionality can be observed by the number of change requests related to
functionality (or quality). As well, having requirements completion running late could mean that
there is difficulty obtaining requirements and, thus, defining functionality. Measuring the
variation in time between target sign-off date for requirements and the actual sign off date can
be a leading indicator that there may be scope challenges.

A defined scope baseline agreed to by the customer forms the functional baseline for the entire
project planning and development. Any change to defined scope should happen in controlled
manner. So an important metric to track i.e. the number of change requests coming from
customer for the already baselined scope of work. Each and every change request, once
approved by an internal change control board (CCB), requires update to Scope baseline which in
turn has a cascade impact on cost baselines and schedule baselines and resource plans.

Copyright@2018 - Herb Krasner - all rights reserved Page 13

Uncontrolled change requests often result in project scope creep and further impact negatively
on the project cost/schedule, which is the worst thing to happen for any project. Based on the
magnitude of the variance from original scope baseline, CCB should decide whether to accept or
reject a change request and this decision should be communicated back to the customer. In the
case of acceptance of a change request, the impact on project cost, schedule and quality should be
clearly communicated in written form to the customer and a written agreement from the
customer is secured before proceeding. The formality of this process is often relaxed in agile
projects.

One metric for monitoring scope is the frequency and magnitude of project change requests. This
includes vendor contract amendments if part of the work is sourced. In most organizations,
change requests can be submitted at any time. However, there may be regularly scheduled
change request review meetings by CCB or its equivalent after which the status can be updated.
In agile environments scope is allowed to change at identified activity points (e.g. backlog
grooming after iteration closure), but still is tracked for impact. The trend period should be
aligned with these meetings/reviews to capture the change in information.

A change in scope can be observed by the number and size of change requests related to
functionality. Measuring the variation in time between target sign-off date for requirements and
the actual sign off date can be a leading indicator that there may be scope challenges.

Metric 7: Requirements satisfaction

Requirements satisfaction is a stand in for customer/user satisfaction prior to the existence of
demonstrable functionality. As such it relies on the discipline of requirements change
management to keep track of the current baseline, and the traceability mapping between the
baseline and the current set of work products.

Many teams find it difficult to answer the following questions as the project proceeds through its
SDLC phases:
* Do the essential requirements meet the basic needs of the intended users?
* Does the system architecture support and enable all of the requirements?
* Do the detailed designs incorporate the architectural constraints and address the
allocated requirements?
* Does the code satisfy all of the above and efficiently implement the requirements?
* Do the test scripts, test cases and test environment assure us that the system will work
properly in its intended environment?
* Have we sufficiently tested the system to ensure that it satisfies all requirements?
* How and when will [know that we are done with this project?
Agile teams may ask a slightly different set of questions, but eventually these must all line up.

In every project there must be a clear understanding of each requirement and accountability or
ownership of each requirement. The team uses the requirements documentation and traceability
matrices to establish understanding and ownership of each requirement and to track the
completion of each requirement into the new system as implemented. Requirements traceability
is assumed in order to measure requirements satisfaction at intermediate milestones and

Copyright@2018 - Herb Krasner - all rights reserved Page 14

checkpoints. Requirements traceability can be thought of as a process of documenting the
connection and relationships between the initial requirements of the project, the intermediate
work products and the final product or service produced. This discipline is assumed to be active
during all project phases. The technique is considered as a bilateral approach in that it tracks the
requirements forward by examining the output of the deliverables and also backwards by
looking at the business requirements that was specified for that feature of the product. A
traceability tool is essential.

Requirements satisfaction is therefore conceived as the completeness of the mapping of the
current state of the project (and its work products) back to the current baseline set of
requirements. Either that mapping is complete, partially complete or unable to be determined.
The latter result is undesirable.

At the delivery point(s) of the project, customer satisfaction survey data should be collected,
analyzed and reported for this metric.

Conclusions

What about Overall Status of the project being tracked?

The overall objective for an IT project is: Deliver a system/product that meets an expected level of
quality within the stakeholder agreed upon functionality and constraints.

The two most common overall status-rating techniques are Worst Child and Weighted Roll-up.
We prefer the latter of these two.

Worst child: In this situation, the overall status takes on the value of the worst child (child = sub
factors of success objectives) status. For instance, if the budget status is yellow and all others are
green, the overall status would be yellow. This approach drives attention to pushing projects to
be "all green". It is the most thorough approach, however it may be difficult to distinguish
relative priorities between projects. For example, a project with only one child status of red and a
project with all children status red will both have and an overall status of red.

Weighted roll-up: In this case, each sub-status is provided a relative weighting of its
importance. For example, you could place greater relative importance on budget over scope,
schedule and quality. Of course, you may have more thresholds than the traditional red, yellow
and green. The three thresholds are used here as a simple example.

Measuring overall status is tricky because, suddenly, you may have lost sight of the context of the
status. If the overall status is 'yellow' it is not clear what needs to be addressed. Rather it is a sign
that the project needs attention. Overall status would be a logical combination of the other status
items.

If a project is off track as indicated by the status, management needs to make some decisions and
take action to correct the problems associated with the status. Once the action has been executed
management needs to know if it is making a difference. To do this we need to capture and report
on the status trend. The trend is simply how the status is changing from one reporting period to

Copyright@2018 - Herb Krasner - all rights reserved Page 15

another. The principal consideration is the level of granularity of reporting period. Multiple
levels of reporting periods (and thus multiple trends) may be required.

In a controlled environment, scope only changes through Change Requests. In most
organizations, change requests can be submitted at any time. However, there may be regularly
scheduled change request review meetings after which the status is updated. The trend period
should be aligned with these meetings in order to capture the change in information.

It is natural for parts of a large IT project to change along the way (after all, projects are all about
change - from the way things were in the past, to the way they will be in the future). So, the
better the project has been "scoped" at the beginning, the better will be the baseline to manage
change against. How changing scope is managed (and measured) is therefore a prime
determinant of project success. This is especially true as organizations move from adhoc
projects, to disciplined and mature projects, and then towards more adaptive agile and lean
projects.

IT scope metrics were recommended here to help achieve more successful MIRP performances.
Assuming that some form of EVM is already practiced, these are:
1. BAL
2. System size and its growth
3. Requirements metrics, including:
Change request impact
Scope anomalies, problems and deficiencies
Requirements quality
Requirements volatility
Requirements satisfaction

®ao0 o

A proper implementation of BAL improves tactical project performance in the context of
strategic goals. The final metrics that play an important role in managing scope are
requirements metrics.

These metrics properly track the requirements and document any change that occurs in the
requirements along with the factors that cause the changes. Apart from these, the metrics have
the capabilities to relate the changes with the needs of the project, which support the project
management team to determine the necessity of those changes, deletions and modifications.

As requirement volatility can be high in the initial phase of IT system development, it should be

reduced as the project progresses so that further development is not affected.

The Challenging factors to effective IT project scope management as related to our
recommended metrics are shown in the table below. These underlying causes of these
challenges may emerge differently in different kinds of projects.

Table 1: Recommendations for Scope Measurement Vs. common scope problems

No. [Scope challenges Recommended metrics and plan

Copyright@2018 - Herb Krasner - all rights reserved Page 16

1 Ambiguous project scope BAL, Scope baseline quality, Size

2 Insufficient resource allocation BAL, Requirement metrics, Size

3 Lack of end-user involvement BAL, Requirement metrics

4 Underestimating the complexity

of problem EVM, Scope baseline quality, size
5 Ineffective communication BAL, Requirement metrics
6 Vague and incomplete Requirement metrics, Requirement
requirements management plan

7 Change in customer needs Requirement metrics, Requirement
management plan

8. Change in environment, technology | BAL, Configuration management plan, Size

and/or organization structure

9 Platform changes BAL, Configuration management plan

10 |Lack of change control Change control management plan,
Requirement metrics and Requirement

management

management plan

11 |Addition of extra features Change control management, BAL, Size
and Requirement metrics

Next Steps

Managing a MIRP for success is challenging. Effective measurements can help; especially in the
area of IT scope control. We assert that IT scope must be defined and measured if significant
improvement is to be achieved.

[t will be important for state agency CIO’s and IT Leaders (e.g. IRMs, IT PMOs, IT project leaders,
vendor contract leaders) to begin the process of defining more precisely what their IT scope
objectives and performance indicator(s) would mean; and laying out the framework for
collecting and reporting on all required MIRP performance measurements.

In many leading edge organizations, it is hard to imagine managing IT development and
evolution without metrics to help guide decision-making. There are many practical uses of IT
measurement, but four areas in particular deserve our attention:

1. Project estimation, progress monitoring and corrective action
2. Evaluation of work products

3. Discipline-driven process improvements

4. Experimental validation of best practices

We are hopeful that the positions put forward in this paper provide useful guidelines that can be
adapted to the state, the agencies and local project needs as necessary. To the extent that other
states are following a similar path to effective measurement of large IT projects, perhaps the
guidance contained herein may help them as well.

Copyright@2018 - Herb Krasner - all rights reserved Page 17

References

1. IT Quality: Measurement Implications for Large IT Projects in Texas
By Herb Krasner, Don Shafer and Linda Shafer, November 8, 2017
http://it-cisq.org/wp-content/uploads/2017/11/IT-Quality-Measurement-Implications-for-Large-IT-Projects-in-Texas-Nov-2017.pdf

2. R.S.Kaplan, D.P. Norton, The Balanced Scorecard. Translating Strategy into Action
(Harvard Business School Press, 1996)

3. N.Fenton, Software metrics: A Rigorous Approach (Thompson Computer Press, 1995)

4. Krasner, H. (1989) REQUIREMENTS DYNAMICS IN LARGE SOFTWARE PROJECTS: A Perspective
on New Directions in the Software Engineering Process, In the Proceedings of the 11th World
Computer Congress (IFIP89), Elsevier Science Publishers B.V., Amsterdam, The Netherlands,
August, 1989

5. D.C.Gause and G.M.Weinberg, Exploring Requirements: Quality before Design,
Dorsethouse Pub. New York, NY, 1989.

6. Balanced Scorecard Framework In Software Project Monitoring, Journal Of Engineering
Management And Competitiveness (JEMC) Vol. 1, No. 1/2, 2011, 51-56 ISSN 2217-8147

7. Scorecard And KPIs For Monitoring Software Factories Effectiveness In The Financial
Sector, International Journal of Information Systems and Project Management, Vol. 1, No.
3,2013, 29-43, ISSN (print):2182-7796

8. The Goal/Question/Metric Methodology: a practical guide for quality improvement in
software development, Solingen and Berghout, 1999, McGraw-Hill Publisher

9. A Guide to the Project Management Body of Knowledge, 6% Edition; and the Software
Extension to the PMBOK® Guide (Chapter 5). http://www.pmi.org/pmbok-guide-standards

10. MIRP Definition, A MIRP in Texas is typically > $1M and/or longer than a year to
complete, or involving more than 1 agency. See Texas Government Code, Chapter
2054.003 for details.

11. Measurement Implications for Large IT Projects in Texas, By Herb Krasner, August, 2017
http://it-cisg.org/measuring-it-project-performances-in-texas-house-bill-hb-3275-implications/

12. ISBSG repository, http://isbsg.org/

13. Taylor, A. (2000), IT Projects: Sink or Swim?,
http://archive.bcs.org/bulletin/jan00/article1.htm

Copyright@2018 - Herb Krasner - all rights reserved Page 18

Appendix 1: Authors’ Contact Information

Primary author: Herb Krasner

Email: hkrasner@utexas.edu
Phone #: 830-693-0631
Bio: http://www.ece.utexas.edu/people/faculty /herb-krasner

Author:
Email:

Phone #:

Bio:

Author:
Email:

Phone #:

Bio:

Don Shafer

dshafer@athensgroup.com
+1512.663.1459
https://www.linkedin.com/in/donshafer/

Linda Shafer

Ishafer@computer.org

+1512.474.4398
https://www.linkedin.com/in/linda-shafer-15a0218/

Copyright@2018 - Herb Krasner - all rights reserved

Page

19

