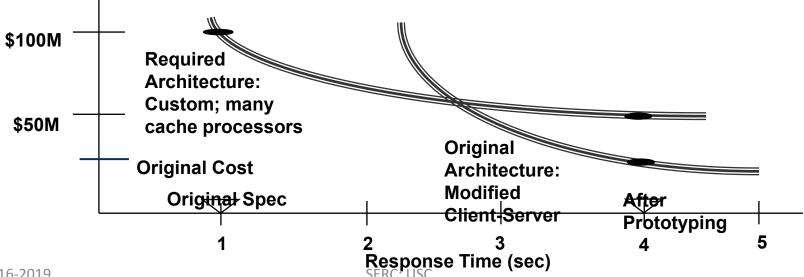


Querying, Qualifying, and Quantifying the Qualities Quagmire

Barry Boehm, USC Cyber Resilience Summit 7 October 16, 2019


- The System Qualities (SQs) quagmire
 - Or non-functional requirements; ilities
 - Poorly defined, understood, e.g. standards
 - Underemphasized in project management
 - Major source of project overruns, failures
 - Key role of Maintainability
 - Maintainability opportunities and challenges
 - **–**Tools for improving Maintainability
 - Conclusions

Importance of SQ Tradeoffs

Major source of system overruns, Life cycle costs

- SQs have systemwide impact
 - System elements generally just have local impact
- SQs often exhibit asymptotic behavior
 - Watch out for the knee of the curve
- Best architecture is a discontinuous function of SQ level
 - "Build it quickly, tune or fix it later" highly risky
 - Large system example below

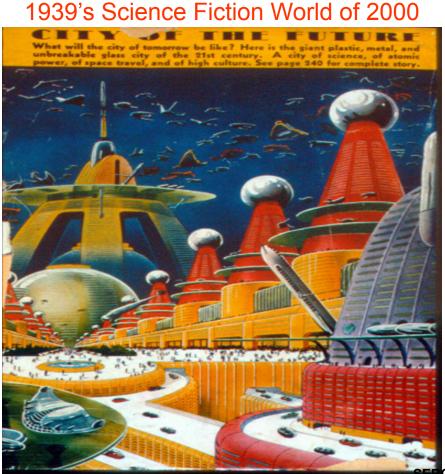
- Engineered Resilient Systems a US DoD priority area in 2012
- Most DoD activity focused on physical systems
 - Field testing, supercomputer modeling, improved vehicle design and experimentation
- DoD SERC tasked to address resilience, tradespace with other SQs for cyber-physical-human systems
 - Vehicles: Robustness, Maneuverability, Speed, Range, Capacity, Usability, Modifiability, Reliability, Availability, Affordability
 - C3I: also Interoperability, Understanding, Agility, Relevance, Speed
- Resilience found to have numerous definitions
 - Wikipedia 2012 proliferation of definitions
 - Weak standards: ISO/IEC 25010: Systems and Software Quality

- Wikipedia 2012 Resilience variants: Climate, Ecology, Energy Development, Engineering and Construction, Network, Organizational, Psychological, Soil
- Ecology and Society Organization Resilience variants: Original-ecological, Extended-ecological, Walker et al. list, Folke et al. list; Systemic-heuristic, Operational, Sociological, Ecological-economic, Social-ecological system, Metaphoric, Sustainabilty-related
- Variants in resilience outcomes
 - Returning to original state; Restoring or improving original state; Maintaining same relationships among state variables; Maintaining desired services; Maintaining an acceptable level of service; Retaining essentially the same function, structure, and feedbacks; Absorbing disturbances; Coping with disturbances; Self-organizing; Learning and adaptation; Creating lasting value
 - Source of serious cross-discipline collaboration problems

- Single-agent key distribution; single data copy
 - Reliability: single points of failure
- Elaborate multilayer defense
 - Performance: 50% overhead; real-time deadline problems
- Elaborate authentication
 - Usability: delays, delegation problems; GUI complexity
- Everything at highest level
 - Modifiability: overly complex changes, recertification

- "The system shall have a Mean Time Between Failures of 10,000 hours"
- What is a "failure?"
 - 10,000 hours on liveness
 - But several dropped or garbled messages per hour?
- What is the operational context?
 - Base operations? Field operations? Conflict operations?
- Most management practices focused on functions
 - Requirements, design reviews; traceability matrices; work breakdown structures; data item descriptions; earned value management
- What are the effects of or on other SQs?
 - Cost, schedule, performance, maintainability?

- The System Qualities (SQs) quagmire
 - Or non-functional requirements; ilities
 - Poorly defined, understood, e.g. standards
 - Underemphasized in project management
 - Major source of project overruns, failures
- ➡ Key role of Maintainability
 - Maintainability opportunities and challenges
 - -Tools for improving Maintainability
 - Conclusions


What is Technical Debt (TD)?

- TD: Delayed technical work or rework that is incurred when short-cuts are taken or short-term needs are addressed first
 - The later you pay for it, the more it costs (interest on debt)
- Global Information Technology Technical Debt [Gartner 2010]
 - 2010: Over \$500 Billion; By 2015: Over \$1 Trillion
 - 2018: CISQ estimate: 2.8 trillion
- TD as Investment
 - Competing for first-to-market
 - Risk assessment: Build-upon prototype of key elements
 - Rapid fielding of defenses from terrorist threats
- TD as Lack of Foresight
 - Overfocus on Development vs. Life Cycle
 - Skimping on Systems Engineering
- _____Aging legacy systems

Persistence of Legacy Systems

 New life-cycle technology needs to address improvement of aging legacy systems

Actual World of 2000

Software Quality Understanding by Analysis of Abundant Data (SQUAAD)

> An automated cloud-based infrastructure to

- Retrieve a subject system's information from various sources (e.g., commit history and issue repository).
- Distribute hundreds of distinct revisions on multiple cloud instances, compile each revision, and run static/dynamic programming analysis techniques on it.
- Collect and interpret the artifacts generated by programming analysis techniques to extract quality attributes or calculate change.

> A set of statistical analysis techniques tailored for understanding software quality evolution.

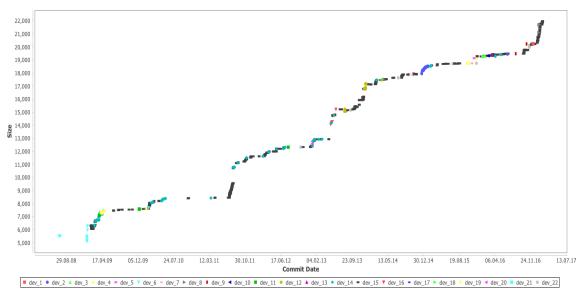
- Simple statistics, such as frequency of code smell introduction or correlation between two quality attributes.
- Machine learning techniques, such as clustering developers based on their impact.

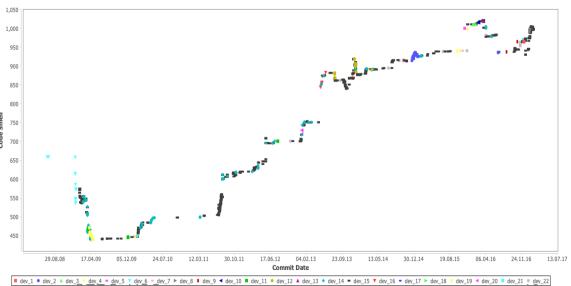
> An extensible web interface to illustrate software evolution.

A Recent Experiment

Metrics					
Group	Abbr.	Tool	Description		
Basic	LC FN CS	SonarQube SonarQube FindBugs	Physical Lines excl. Whitespaces/Comments Functions Classes		
Code Quality	CX SM PD	SonarQube SonarQube PMD	Complexity (Number of Paths) Code Smells Empty Code, Naming, Braces, Import Statements, Coupling, Unused Code, Unnecessary, Design, Optimization, String and StringBuffer, Code Size		
Security	VL SG FG	SonarQube PMD FindBugs	Vulnerabilities Security Guidelines Malicious Code, Security		

Scale

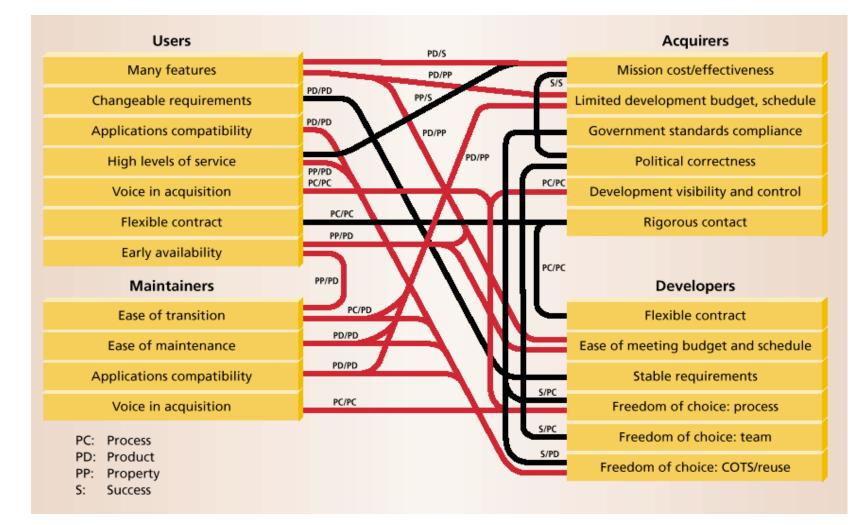

Org.	Time Span	Sys.	Dev.	Rev.	MSLOC
	09/12-12/17	12	251	3683	34
	01/02-03/17	39	1102	20197	576
Google	08/08-01/18	17	402	11354	753
Total	01/02-01/18	68	1755	35234	1363


Evolution of a Single Quality Attribute

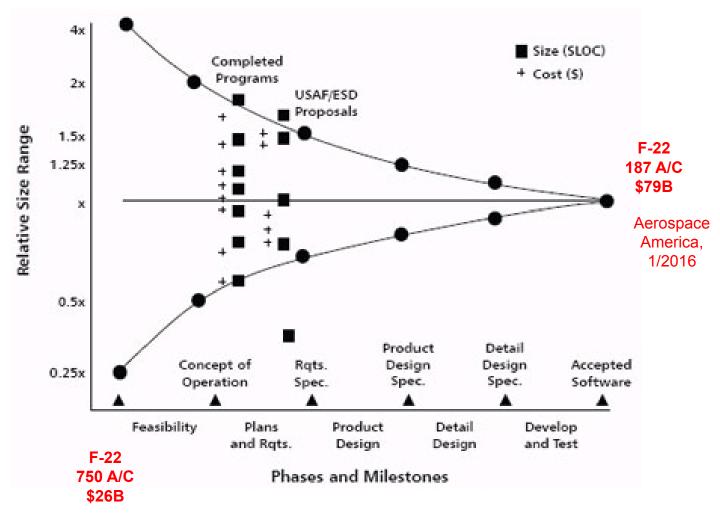
SERC:

USC

 \succ How a single quality attribute evolves. > Two metrics • Size (top) Code Smells (bottom) > One project > 9 years



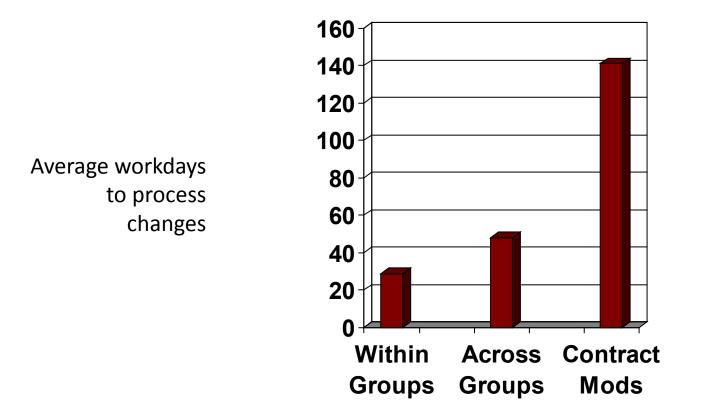
13


Top-10 Non-Technical Sources of Tech Debt Based on Workshop participant vote totals

- 1. Separate organizations and budgets for systems and software acquisition and maintenance (34)
- 2. Overconcern with the Voice of the Customer (31)
- 3. The Conspiracy of Optimism (28)
- 4. Inadequate system engineering resources (21)
- 5. Hasty contracting focused on fixed operational requirements (21)
- 6. CAIV-limited system requirements (20)
- 7. Brittle, point-solution architectures (18)
- 8. The Vicious Circle (15)
- 9. Stovepipe systems (12)
- 10. Over-extreme forms of agile development (10)

2. Overconcern with the Voice of the Customer/User Bank of America Master Net

3. The Conspiracy of Optimism Take the lower branch of the Cone of Uncertainty


Example: Reliability Revisited

- Reliability is the probability that the system will deliver stakeholder-satisfactory results for a given time period (generally an hour), given specified ranges of:
 - Stakeholders: desired and acceptable ranges of liveness, accuracy, response time, speed, capabilities, etc.
 - System internal and external states: integration test, acceptance test, field test, etc.; weather, terrain, DEFCON, takeoff/flight/landing, etc.
 - System internal and external processes: security thresholds, types of payload/cargo; workload volume, diversity
 - Effects of other SQs: synergies, conflicts

Problem and Opportunity (%O&M costs) Remember Willie Sutton

- US Government IT: ~75%; \$59 Billion [GAO 2015]
- Hardware [Redman 2008]
 - 12% -- Missiles (average)
 - 60% -- Ships (average)
 - 78% -- Aircraft (F-16)
 - 84% -- Ground vehicles (Bradley)
- Software [Koskinen 2010]
 - 75-90% -- Business, Command-Control
 - 50-80% -- Complex platforms as above
 - 10-30% -- Simple embedded software
- Primary current emphasis minimizes acquisition costs
 - DoD Better Buying Power memos: Should-Cost

Average Change Processing Time: Two Complex Systems of Systems

Incompatible with turning within adversary's OODA loop

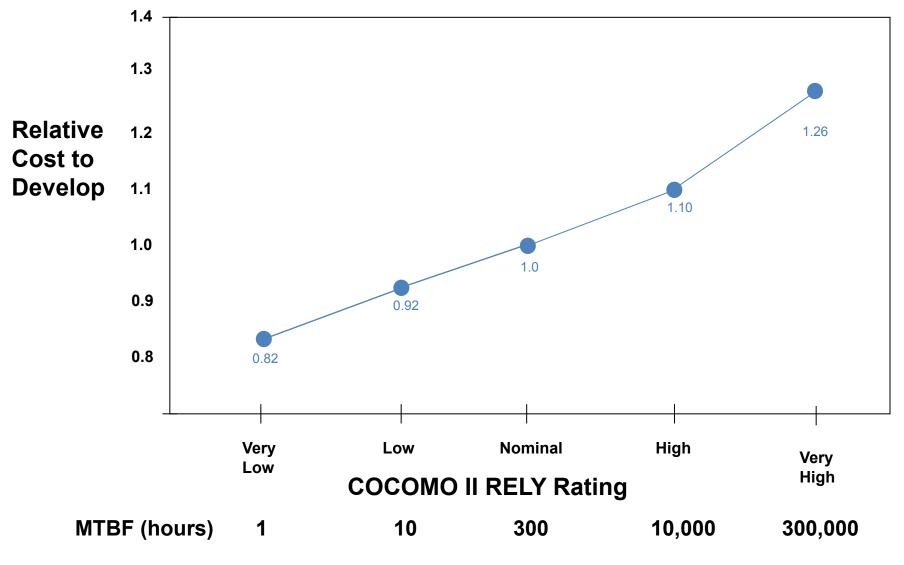
Observe, Orient, Decide, Act

SERC; USC

Maintainability Opportunity Tree: Modifiability

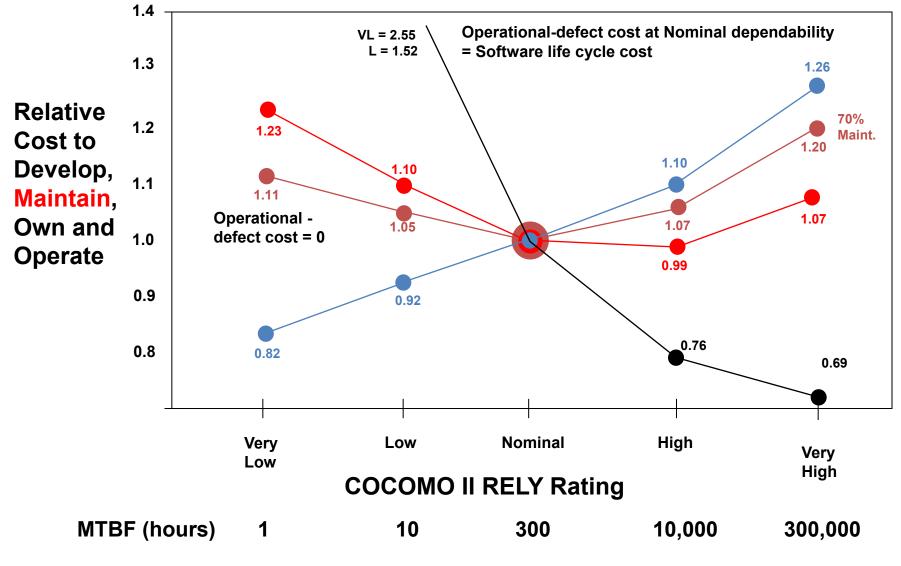
Anticipate Modifiability Needs	 Evolution information Trend analysis Hotspot (change source) analysis Modifier involvement Address Potential Conflicts
Design/Develop for Modifiability	 Modularize around hotspots Service-orientation; loose coupling Spare capacity; product line engineering Domain-specific architecture in domain In-flight diagnosis Move to Continuous Delivery
Improve Modification V&V	 Prioritize, Schedule Modifications, V&V Modification compatibility analysis Regression test capabilities Value-Based V&V

Investing in Reliability vs. Maintainability


- Baseline: System with 10,000 hours MTBF, 4 days MTTR
 Availability = 10,000 / (10,000 + 96) = 0.9905
- A. Higher Reliability: 100,000 hour Mean Time Between Failures
 - 4 days Mean Time to Repair
- B. Higher Maintainability: 10,000 hour MTBF
 - 4 hours Mean Time to Repair
 - F-35 Autonomic Logistics information System (ALIS)
- Compare on Availability = MTBF / (MTBF + MTTR)
- A. Availability = 100,000 / (100,000 + 96) = 0.9990
- B. Availability = 10,000 / (10,000 + 4) = 0.9996

7x7 Synergies and Conflicts Matrix

- Mission Effectiveness expanded to 4 elements
 - Physical Capability, Cyber Capability, Interoperability, Other Mission Effectiveness (including Usability as Human Capability)
- Synergies and Conflicts among the 7 resulting elements identified in 7x7 matrix
 - Synergies above main diagonal, Conflicts below
- Work-in-progress tool will enable clicking on an entry and obtaining details about the synergy or conflict
 - Ideally quantitative; some examples next
- Still need synergies and conflicts within elements
 - Such as Security-Reliability synergies and conflicts


	Flexibility	Dependability	Mission Effectivenss	Resource Utilization	Physical Capability	Cyber Capability	Interoperability
		Domain architecting within domain	Adaptability	Adaptability	Adaptability	Adaptability	Adaptability
		Modularity	Many options	Agile methods	Spare capacity	Spare capacity	Loose coupling
		Self Adaptive	Service oriented	Automated I/O validation			Modularity
Flexibility		Smart monitoring	Spare capacity	Loose coupling for sustainability			Product line architectures
		Spare Capacity	User programmability	Product line architectures			Service-oriented connectors
		Use software vs. hardware	Versatility	Staffing, Empowering			Use software vs. Hardware
							User programmability
	Accreditation		Accreditation	Automated aids	Fallbacks	Fallbacks	Assertion Checking
	Agile methods assurance		FMEA	Automated I/O validation	Lightweight agility	Redundancy	Domain architecting within domain
	Encryption		Multi-level security	Domain architecting within domain	Redundancy	Value prioritizing	Service oriented
Dependability	Many options		Survivability	Product line architectures	Spare capacity		
. ,	Multi-domain modifiability		Spare capacity	Staffing, Empowering	Value prioritizing		
	Multi-level security			Total Ownership Cost			
	Self Adaptive defects User programmability			Value prioritizing			
	oser programmability						
	Autonomy vs. Usability	Anti-tamper		Automated aids	Automated aids	Automated aids	Automated aids
	Modularity slowdowns	Armor vs. Weight		Domain architecting within domain	Domain architecting within domain	Domain architecting within domain	Domain architecting within domain
	Multi-domain architecture			Staffing, Empowering	Staffing, Empowering		
Mission Effectivenss	interoperability conflicts	Easiest-first development		starting, Empowering	Starring, Empowering	Staffing, Empowering	Staffing, Empowering
	Versatility vs. Usability	Redundancy		Value prioritizing	Value prioritizing	Value prioritizing	
		Scalability					
		Spare Capacity					
	Agile Methods scalability	Usability vs. Security Accreditation	Agile methods scalability		Automated aids	Automated aids	Automated aids
	Agrie Methods scalability Assertion checking	Accreditation	Agrie methods scalability		Domain architecting within	Domain architecting within	Domain architecting within
	overhead	Acquisition Cost	Cost of automated aids		domain	domain	domain
	Fixed cost contracts	Certification	Many options		Staffing, Empowering	Staffing, Empowering	Rework cost savings
	Modularity		Multi-domain architecture		Value prioritizing	Value prioritizing	Staffing, Empowering
		Easiest-first development	interoperability conflicts		value prioritizing		Starring, Empowering
Resource Utilization	Multi-domain architecture interoperability conflicts	Fallbacks	Spare capacity				
	Spare capacity	Multi-domain architecture interoperability conflicts	Usability vs. Cost savings				
	Tight coupling	Redundancy	Versatility				
	Use software vs. hardware	Spare Capacity, tools costs					
	Nevilat deservition 177 - 1	Usability vs. Cost savings	navias de constitución de se				
	Multi-domain architecture interoperability conflicts	Lightweight agility	Multi-domain architecture interoperability conflicts	Cost of automated aids		Automated aids	Automated aids
Physical Capability	Over-optimizing	Multi-domain architecture interoperability conflicts	Over-optimizing	Multi-domain architecture interoperability conflicts		Staffing, Empowering	Domain architecting within domain
	Tight coupling	Over-optimizing		Over-optimizing		Value prioritizing	
	Use software vs. hardware	Multi-domain architecture	Multi-domain architecture				
Cyber Capability	Agile Methods scalability Multi-domain architecture	interoperability conflicts	interoperability conflicts	Cost of automated aids Multi-domain architecture	Over-optimizing Physical architecture or		Automated aids Domain architecting within
	interoperability conflicts	Over-optimizing	Over-optimizing	interoperability conflicts	cyber architecture		domain
	Over-optimizing			Over-optimizing	-, ser arenteeture		
	Tight coupling			o			
	Use software vs. hardware						
Interopera∯i@y16	Multi-domain architecture	Encryption interoperability	Multi-domain architecture	Assertion checking	Over-optimizing	Reduced speed of Assertion	
	interoperability conflicts	charyption interoperability	interoperability conflicts	Assertion checking	over-optimizing	checking	
	20seGprogrammed	Multi-domain architecture	CEI	လိုင်ရေး ကြောင်း (Ccds) ကြောင်း		Reduced speed of	23
	interoperability	interoperability conflicts	JLI	connectors	Tight vs. Loose coupling	connectors, standards	23
		. ,				compliance	
						Tight vs. Loose coupling	

Software Development Cost vs. Reliability

SERC; USC

Software Ownership Cost vs. Reliability

SERC; USC

- System qualities (SQs) are success-critical
 - Major source of project overruns, failures
 - Significant source of stakeholder value conflicts
 - Poorly defined, understood
 - Underemphasized in project management

- Need more emphasis on preparing for Maintainability
 - Critical to Resilience and Total Ownership Cost

Backup Charts

SIS Maintainability Readiness Levels

Software-Intensive Systems Maintainability Readiness Levels

SMR Level	OpCon, Contracting: Missions, Scenarios, Resources, Incentives	Personnel Capabilities and Participation	Enabling Methods, Processes, and Tools (MPTs)
9	5 years of successful maintenance operations, including outcome-based incentives, adaptation to new technologies, missions, and stakeholders	In addition, creating incentives for continuing effective maintainability. performance on long-duration projects	Evidence of improvements in innovative O&M MPTs based on ongoing O&M experience
8	One year of successful maintenance operations, including outcome-based incentives, refinements of OpCon.	Stimulating and applying People CMM Level 5 maintainability practices in continuous improvement and innovation in such technology areas as smart systems, use of multicore processors, and 3-D printing	Evidence of MPT improvements based on ongoing refinement, and extensions of ongoing evaluation, initial O&M MPTs.
7	System passes Maintainability Readiness Review with evidence of viable OpCon, Contracting, Logistics, Resources, Incentives, personnel capabilities, enabling MPTs	Achieving advanced People CMM Level 4 maintainability capabilities such as empowered work groups, mentoring, quantitative performance management and competency-based assets, particularly across key domains.	Advanced, integrated, tested, and exercised full-LC MBS&SE MPTs and Maintainability-other-SQ tradespace analysis
6	Mostly-elaborated maintainability OpCon. with roles, responsibilities, workflows, logistics management plans with budgets, schedules, resources, staffing, infrastructure and enabling MPT choices, V&V and review procedures.	Achieving basic People CMM levels 2 and 3 maintainability practices such as maintainability work environment, competency and career development, and performance management especially in such key areas such as V&V, identification & reduction of technical debt.	Advanced, integrated, tested full-LC Model-Based Software & Systems (MBS&SE) MPTs and Maintainability-other-SQ tradespace analysis tools identified for use, and being individually used and integrated.
5	Convergence, involvement of main maintainability success- critical stakeholders. Some maintainability use cases defined. Rough maintainability OpCon, other success-critical stakeholders, staffing, resource estimates. Preparation for NDI and outsource selections.	In addition, independent maintainability experts participate in project evidence-based decision reviews, identify potential maintainability conflicts with other SQs	Advanced full-lifecycle (full-LC) O&M MPTs and SW/SE MPTs identified for use. Basic MPTs for tradespace analysis among maintainability & other SQs, including TCO being used.
4	Artifacts focused on missions. Primary maintenance options determined, Early involvement of maintainability success- critical stakeholders in elaborating and evaluating maintenance options.	Critical mass of maintainability SysEs with mission SysE capability, coverage of full M-SysE.skills areas, representation of maintainability success-critical- stakeholder organizations.	Advanced O&M MPT capabilities identified for use: Model-Based SW/SE, TCO analysis support. Basic O&M MPT capabilities for modification, repair and V&V: some initial use.
3	Elaboration of mission OpCon, Arch views, lifecycle cost estimation. Key mission, O&M, success-critical stakeholders (SCSHs) identified, some maintainability options explored.	O&M success-critical stakeholders's provide critical mass of maintainability-capable Sys. engrs. Identification of additional. M-critical success-critical stakeholders.	Basic O&M MPT capabilities identified for use, particularly for OpCon, Arch, and Total cost of ownership (TCO) analysis: some initial use.
2	Mission evolution directions and maintainability implications explored. Some mission use cases defined, some O&M options explored.	Highly maintainability-capable SysEs included in Early SysE team.	Initial exploration of O&M MPT options
1	Focus on mission opportunities, needs. Maintainability not yet considered	Awareness of needs for early expertise for maintainability. concurrent engr'g, O&M integration, Life Cycle cost estimation	Focus on O&M MPT options considered

	Software-Intensive Systems Maintainability Readiness Levels					
SMR Level	OpCon, Contracting: Missions, Scenarios, Resources, Incentives	Personnel Capabilities and Participation	Enabling Methods, Processes, and Tools (MPTs)			
7	System passes Maintainability Readiness Review with evidence of viable OpCon, Contracting, Logistics, Resources, Incentives, personnel capabilities, enabling MPTs	Achieving advanced People CMM Level 4 maintainability capabilities such as empowered work groups, mentoring, quantitative performance management and competency-based assets, particularly across key domains.	Advanced, integrated, tested, and exercised full-LC MBS&SE MPTs and Maintainability-other-SQ tradespace analysis			
6	Mostly-elaborated maintainability OpCon. with roles, responsibilities, workflows, logistics management plans with budgets, schedules, resources, staffing, infrastructure and enabling MPT choices, V&V and review procedures.	Achieving basic People CMM levels 2 and 3 maintainability practices such as maintainability work environment, competency and career development, and performance management especially in such key areas such as V&V, identification & reduction of technical debt.	Advanced, integrated, tested full-LC Model-Based Software & Systems (MBS&SE) MPTs and Maintainability- other-SQ tradespace analysis tools identified for use, and being individually used and integrated.			
5	Convergence, involvement of main maintainability success-critical stakeholders. Some maintainability use cases defined. Rough maintainability OpCon, other success-critical stakeholders, staffing, resource estimates. Preparation for NDI and outsource selections.	In addition, independent maintainability experts participate in project evidence- based decision reviews, identify potential maintainability conflicts with other SQs	Advanced full-lifecycle (full-LC) O&M MPTs and SW/SE MPTs identified for use. Basic MPTs for tradespace analysis among maintainability & other SQs, including TCO being used.			

Agility, Assurance, and Continuous Delivery

- Agile Methods for High-Criticality Systems Series Recent SERC Talks, available at https://sercuarc.org/serc-talks/
- Feb. 7, 2018: Jan Bosch, Director Software Center, Chalmers U.
 - Speed, Data and Ecosystems: How to Excel in a Software-Driven World?
- April 4, 2018: Robin Yeman, Lockheed Martin Fellow
 - How do Agile Methods Reduce Risk Exposure and Improve Security on Highly-Critical Systems?
- June 6, 2018: Phyllis Marbach, Recent Boeing Agile Lead
 - How Do You Use Agile Methods on Highly-Critical Systems that Require Earned Value Management?
 - Systems and Software Qualities Tradespace Analysis Series
- August 8, 2018: Barry Boehm, USC Prof., SERC Chief Scientist
 - How to Query, Qualify and Quantify the Qualities Quagmire?
- October 3, 2018: Bill Curtis, Senior VP, CAST; Executive Director, CISQ
 - How Can We Advance Structural Quality Analysis with Standards and Machine Learning?
- December 11, 2018: Xavier Franch, U. Catalonia Poly, Co-Director, EC Q-Rapids
 - Why Are Ontologies and Languages for Software Quality Increasingly Important?

- Alfayez, R., Chen, C., Behnamghader, P., Srisopha, K. and Boehm, B. "An Empirical Study of Technical Debt in Open-Source Software Systems", CSER 2017
- Behnamghader, P. and Boehm, B., Towards Better Understanding of Software Quality Evolution Through Commit-Impact Analysis, Proceedings, IEEE Software Quality, Reliability and Security Conference (QRS), July 2017.
- Boehm, B.,Kukreja, N. "An Initial Ontology for System Quality Attributes." In *Proceedings, INCOSE International Symposium,* July 2015.
- B.Boehm, C.Chen, L.Shi, K.Srisopha, "Maintainability Readiness Levels for Software-Intensive Systems," CSER 2016, March 2016.
- B.Boehm, C.Chen, L.Shi, K.Srisopha, "The Key Roles of Maintainability in an Ontology for System Qualities," INCOSE International Symposium, July 2016.
- Chen, C., Alfayez, R., Srisopha, K., Shi, L., and Boehm, B. "Evaluating Human-Assessed Software Maintainability Metrics." In Proceedings, NASAC, Dec. 2016.
- Chen, C, Shi, L., Shoga, M, Wang, Q. and Boehm, B., How Do Defects Hurt Qualities? An Empirical Study on Characterizing A Software Maintainability Ontology in Open Source Software, Proceedings, IEEE QRS, July 2018.