

Draft NIST Special Publication (SP) 800-160, Volume 2 Developing Cyber Resilient Systems: A Systems Security Engineering Approach

Victoria Yan Pillitteri victoria.yan@nist.gov
October 16, 2019

Overview of Draft NIST SP 800-160, Volume 2

Developing Cyber Resilient Systems: A Systems Security Engineering Approach

- Background
- Cyber Resiliency Fundamentals
- Cyber Resiliency in Practice
- Use Cases and Real World Example
- Next Steps
- Update on NIST publications
- Contact Information and Questions

Current landscape

Today's systems are very brittle, rely on a one-dimensional protection strategy of penetration resistance, and are highly susceptible to devastating cyber-attacks.

The adversaries are relentless.

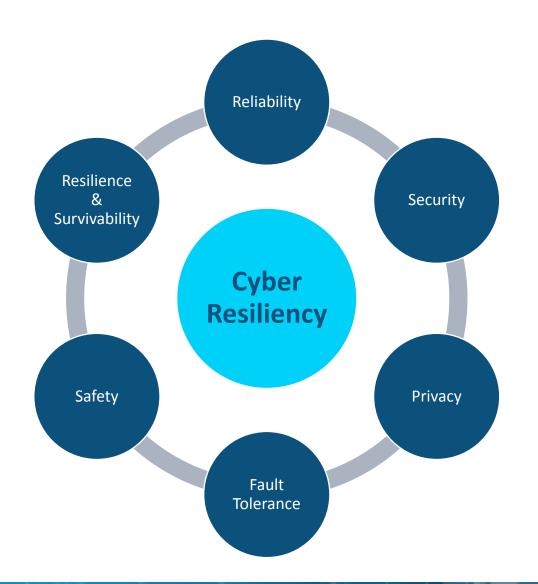
The need for a new paradigm

multi-dimensional protection strategy that includes developing damage limiting system architectures and cyber resilient systems.

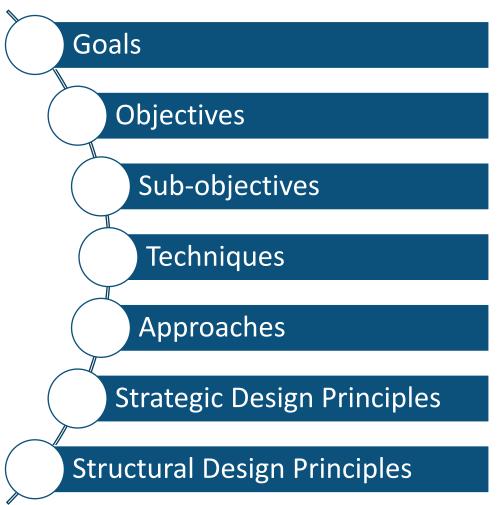
Objective of SP 800-160, Volume 2

Supplement NIST SP 800-160, Vol 1 & NIST SP 800-37

with guidance on how to apply cyber resiliency as part of systems security engineering and risk management for information systems and organizations.

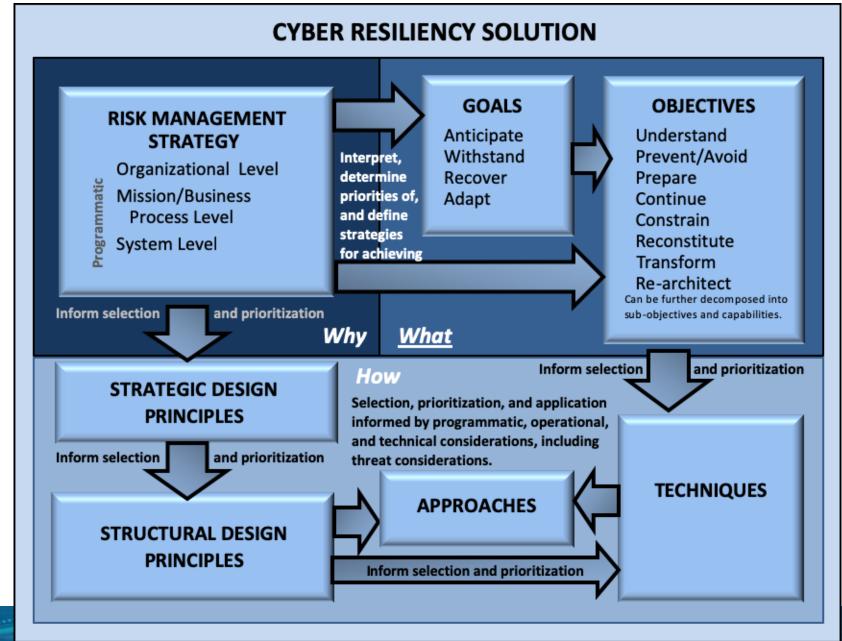

Identify cyber resiliency considerations

to support the engineering of trustworthy systems that depend on cyber resources


Cyber resiliency

The ability to anticipate, withstand, recover from, and adapt to adverse conditions, stresses, attacks, or compromises on systems that use or are enabled by cyber resources.

Cyber resiliency conceptual framework



Section 2 describes the framework constructs, and includes the definition, purpose, application, and provides a higher-level description of the constructs

Appendix E provides details on the constructs and relationships

NIST CYBER

Risk
Management
Framework
and
System Security
Engineering
communities

Cyber resiliency & security in the system life cycle

Section 2 discusses applying cyber resiliency concepts to the life cycle stages

Appendix F provides examples of cyber resiliency considerations for system life cycle processes (SP 800-160 vol 1)

System Life Cycle Processes

Recursive, Iterative, Concurrent, Parallel, Sequenced Execution

Agreement Processes	Organization Project-Enabling Processes	Technical Management Processes	Technical Processes
• Acquisition • Supply	Life Cycle Model Management Infrastructure Management Portfolio Management Human Resource Management Quality Management Knowledge Management	Project Planning Project Assessment and Control Decision Management Risk Management Configuration Management Information Management Measurement Quality Assurance	Business or Mission Analysis Stakeholder Needs and Requirements Definition System Requirements Definition Architecture Definition Design Definition System Analysis Implementation Integration Verification Transition Validation Operation Maintenance Disposal

Life Cycle Stages

Source: <u>ISO/IEC/IEEE 15288: 2015</u>

Considerations for the system life cycle processes in NIST SP 800-160, Volume 1

Agreement Processes	Organizational Project- Enabling Processes	Technical Management Processes Processes		
AcquisitionSupply	 Life Cycle Model Management (Mgmt) Infrastructure Mgmt Portfolio Mgmt Human Resource Mgmt Quality Mgmt Knowledge Mgmt 	 Project Planning Project Assessment & Control Decision Mgmt Risk Mgmt Configuration Mgmt Information Mgmt Measurement Quality Assurance 	 Business or Mission Analysis Stakeholder Needs & Requirements (Reqs) Definition System Reqs Definition Architecture Definition System Analysis Implementation Validation Integration Operation Verification Maintenance Transition 	

Considerations for the system life cycle processes in NIST SP 800-160, Volume 2

Agreement Processes	Organizational Project- Enabling Processes	Technical Management Processes	Technical Processes
AcquisitionSupply	 Life Cycle Model Management (Mgmt) Infrastructure Mgmt Portfolio Mgmt Human Resource Mgmt Quality Mgmt Knowledge Mgmt 	 Project Planning Project Assessment & Control Decision Mgmt Risk Mgmt Configuration Mgmt Information Mgmt Measurement Quality Assurance 	 Business or Mission Analysis Stakeholder Needs & Requirements (Reqs) Definition System Reqs Definition Architecture Definition System Analysis Implementation • Validation Integration • Operation Verification • Maintenance Transition • Disposal

Considerations for the system life cycle processes in NIST SP 800-160

NIST SP 800-160, Vol 1

SR-2.2: Define system security requirements, security constraints on system requirements, and rationale.

Discussion: The system security requirements express security functions provided by the system and security-driven constraints levied on the entire system. System security applies to the entire system (to include the security functions) in terms of susceptibility to disruption, hazard, and threat resulting in adverse consequences....

NIST SP 800-160, Vol 2

SR-2.2: Define system security **and cyber resiliency** requirements, security **and cyber resiliency** constraints on system requirements, and rationale.

Discussion: From a cyber resiliency perspective, susceptibility to disruption, hazard, and threat should be considered not only with respect to direct consequences, but also to deferred and indirect consequences. Direct consequences disrupt, destroy, disable, or otherwise impact the ability of the system to support the mission or business functions....

Considerations for selecting & prioritizing cyber resiliency constructs

achievement of goals & objectives

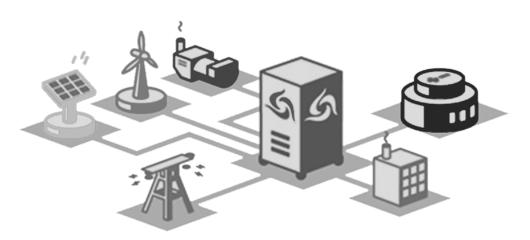
architectural locations

type of system

effects on adversaries, threats & risks

cyber resiliency conflicts & synergies

maturity & potential adoption


cyber risk management strategy

other disciplines & existing investments

3 use cases

Real-world example: Ukrainian power grid attack

For each step of the attack, identifies potential cyber resiliency mitigations and representative technologies.

MALWARE FUNCTIONALITY	POTENTIAL MITIGATIONS	REPRESENTATIVE TECHNOLOGIES		
Execute SIPROTEC DoS, HMI switch toggle, Amplify, Data Wiper attacks	Redundancy with Diversity of HMIs [impede] Analytic Monitoring of HMI interactions with operators, and to detect Wiper commands and derivatives in the scheduler [expose] Adaptive Response (e.g., run notepad to remove Wiper commands and derivatives) [impede, limit]	Make architectural changes to use existing technologies in a diverse and redundant way IDS for OT, ICS, or SCADA		
Future Payloads	Redundancy with Diversity of OT procedures and protocols [impede] Redundancy of actions/logins on HMIs [impede]	 Make architectural changes to use existing technologies in a diverse and redundant way Use an OT security management platform to require redundant actions via HMIs 		

Next steps: submit comments on Draft SP 800-160 Vol. 2

September 4 - November 1, 2019

https://csrc.nist.gov/publications/detail/sp/800-160/vol-2/draft

sec-cert@nist.gov

NIST SP 800-53 controls supporting cyber resiliency

maps to 1+ cyber resiliency techniques

maps to 1+ cyber resiliency approaches

protects against the **APT**

controls supporting cyber resiliency

Control Name	Resiliency Technique [Approaches]
AC-6: Least Privilege	Privilege Restriction [Attribute- Based Usage Restriction]
CP-12: Safe Mode	aptive Response [Adaptive
RA-9: Criticality Analysis	Contextua Ay areness [Mission Dependency and Status Visualization] Realignment [Offloading]

primary focus on achieving C, I, A

info security & other safeguards

policy, training, documentation, environmental, personnel security, compliance, vuln assessment

primary focus on continuity of operations

organizational or operational resiliency

Adversary-oriented analysis

Appendix H provides a mapping of the NSA/CSS Technical Cyber Threat Framework (NTCTF) against the cyber resiliency techniques and approaches.

	STAGE →	PRESENCE					
TECHNIQUE	OBJECTIVE →	Execution	Internal Recon	Privilege Escalation	Credential Access	Lateral	Persistence
	APPROACH					Movement	reisistence
Redundancy	Protected Backup Surplus Capacity	No effect No effect	No effect No effect	No effect No effect	No effect No effect	No effect No effect	No effect No effect
Segmentation	Replication Predefined Segmentation	No effect Contain Delay	No effect Contain Delay	No effect Delay Negate Contain	No effect Contain Delay Preempt	No effect Delay Contain	No effect No effect
	Dynamic Segmentation	Contain Delay	Contain Delay	Delay Negate Contain	Contain Delay Preempt	Delay Contain	No effect
Substantiated	Integrity Checks	Detect	No effect	No effect	No effect	No effect	Detect
Integrity	Provenance Tracking	No effect	No effect	No effect	No effect	No effect	No effect
	Behavior Validation	Detect	No effect	Detect	Detect	No effect	Detect
Unpredict- ability	Temporal Unpredictability	Preempt Detect Delay	Delay Preempt	Delay Preempt	Delay Preempt	Delay Preempt	Delay Preempt
	Contextual Unpredictability	Preempt Detect Delay Exert	Delay Exert Preempt	Delay Exert Preempt	Delay Exert Preempt	Delay Exert Preempt	Delay Exert Preempt